Fractional decay bounds for nonlocal zero order heat equations

نویسندگان

  • Emmanuel Chasseigne
  • Patricio Felmer
  • J. Rossi
  • Erwin Topp
چکیده

In this paper we obtain bounds for the decay rate for solutions to the nonlocal problem ∂tu(t, x) = R n J(x, y)[u(t, y) − u(t, x)]dy. Here we deal with bounded kernels J but with polynomial tails, that is, we assume a lower bound of the form J(x, y) ≥ c1|x − y| −(n+2σ) , for |x − y| > c2. Our estimates takes the form u(t) L q (R n) ≤ Ct − n 2σ (1− 1 q) for t large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Results for a Class of Nonlinear Fractional Heat Equations

In this article we study various convergence results for a class of nonlinear fractional heat equations of the form ⎧ ⎨ ⎩ ut(t, x)− I[u(t, ·)](x) = f(t, x), (t, x) ∈ (0, T )× Rn, u(0, x) = u0(x), x ∈ Rn, where I is a nonlocal nonlinear operator of Isaacs type. Our aim is to study the convergence of solutions when the order of the operator changes in various ways. In particular, we consider zero...

متن کامل

Asymptotic Behavior for Nonlocal Diffusion Equations

We study the asymptotic behavior for nonlocal diffusion models of the form ut = J ∗ u − u in the whole R or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In R we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If Ĵ(ξ) = 1 − A|ξ| + o(|ξ|) ...

متن کامل

Nonlocal nonlinear advection-diffusion equations

We review some results about nonlocal advection-diffusion equations based on lower bounds for the fractional Laplacian. To Haim, with respect and admiration.

متن کامل

Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications

We prove nonlinear lower bounds and commutator estimates for the Dirichlet fractional Laplacian in bounded domains. The applications include bounds for linear drift-diffusion equations with nonlocal dissipation and global existence of weak solutions of critical surface quasi-geostrophic equations.

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013